Glia in development, function, and neurodegeneration of the adult insect brain.
نویسندگان
چکیده
Glial cells have long been viewed as a passive framework for neurons but in the meanwhile were shown to play a much more active role in brain function and development. Several reviews have described the function of glia in the insect embryo. The focus of this review is the role of glial cells in the development and function of the normal and diseased adult brain. In different insect species, a considerable variety of central nervous system glia has been described indicating adaptation to different functional requirements. In the development of the adult visual and olfactory system, glial cells guide incoming axons acting as intermediate targets. Glia are part of the insect blood-brain barrier, provide nourishment for neurons, and help to regulate the extracellular concentration of ions and neurotransmitters. To fulfill these tasks insect glial cells, like vertebrate glia, interact with each other and with neurons, thus influencing neural activity. The examples presented suggest that crosstalk between all brain cells is necessary not only to develop and maintain the complex insect brain but also to endow it with the capacity to respond and adapt to the changing environment.
منابع مشابه
Adult Hippocampal Neurogenesis and Memory
Adult neurogenesis, a concept emergent in the late 1990s, is the generation of new neurons in the adult brain. This process occurs thank to cells who have this proliferative feature, named as Neural Stem Cells (NSCs). Neural Stem Cells (NSCs) are primary progenitors who can generate the two neural types (neurons and glia). Classically it was assumed that NSCs are only present in the embryo, but...
متن کاملAdult Hippocampal Neurogenesis and Memory
Adult neurogenesis, a concept emergent in the late 1990s, is the generation of new neurons in the adult brain. This process occurs thank to cells who have this proliferative feature, named as Neural Stem Cells (NSCs). Neural Stem Cells (NSCs) are primary progenitors who can generate the two neural types (neurons and glia). Classically it was assumed that NSCs are only present in the embryo, but...
متن کاملAlterations in adult hippocampal neurogenesis, aberrant protein s-nitrosylation, and associated spatial memory loss in streptozotocin-induced diabetes mellitus type 2 mice
Objective(s): Epidemiological and biochemical studies conducted over the past two decades have established a strong link between type 2 diabetes mellitus (T2DM) and Alzheimer’s disease (AD). However, the exact mechanisms through which aberrations in insulin signaling associated with T2DM contribute to cognitive decline are not yet known. Materials and Methods: In an effort to explore possible m...
متن کاملP 67: The Role of Neuroinflammation in Dysfunction of Adult Hippocampal Neurogenesis
Neuroinflammation as a protective mechanism for repairing tissue damage in the central nervous system (CNS), has been classified into two types: acute and chronic. It is characterized by the activation of microglia and astrocytes and the increase levels of different chemokines and cytokines. Neuroinflammation can be harmful, and it is a common pathological feature in neurodegenerative and psych...
متن کاملDefective Phagocytic Corpse Processing Results in Neurodegeneration and Can Be Rescued by TORC1 Activation.
UNLABELLED The removal of apoptotic cell corpses is important for maintaining homeostasis. Previously, defects in apoptotic cell clearance have been linked to neurodegeneration. However, the mechanisms underlying this are still poorly understood. In this study, we report that the absence of the phagocytic receptor Draper in glia leads to a pronounced accumulation of apoptotic neurons in the bra...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Brain research bulletin
دوره 57 1 شماره
صفحات -
تاریخ انتشار 2002